Дифференциальное и интегральное исчисление Вычисление неопределенного интеграла

Математика решебник примеры решения задачи

При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Определители

Рассмотрим систему двух линейных уравнений с двумя неизвестными в общем виде:

 .

Найдем x1 следующим образом: чтобы исключить x2, умножим первое уравнение на a22 и из полученного уравнения вычтем второе, умноженное на a12:

 . (1)

Обозначим D = a11a22 – a12a21, D1 = b1a22 – b2a12.

Для определения x2 поступим так: умножим второе уравнение на a11 и из полученного уравнения вычтем первое, умноженное на a21:
Курс лекций по математике Базис и разложение векторов Решение дифференциальных уравнений

 (a11a22 – a12a21)x2=a11b2 – a21b1. (2)

Обозначим D2 = a11b2 – a21b1.

Из (1) и (2) видно, что если D ¹ 0, то система имеет единственное решение [1], определяемое формулой

 . (3)

Величина D называется определителем матрицы второго порядка

.

Вообще определителем произвольной матрицы второго порядка называется число, которое обозначается  и равно произ­

ведению двух чисел, стоящих на главной диагонали минус произведение двух чисел, стоящих на другой диагонали: a11a22–a12a21.

Например,

  .

Из сказанного следует, что величины D1 и D2 в (3) тоже являются определителями:

 .

Скалярной матрицей называется диагональная матрица с одинаковыми числами на главной диагонали; единичная матрица - частный случай скалярной матрицы.
Функция нескольких переменных