Дифференциальное и интегральное исчисление Вычисление неопределенного интеграла

Математика решебник примеры решения задачи

При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Определители

Дадим определение определителя

квадратной матрицы n-го порядка или просто определителя n-го порядка. (В дальнейшем, принимая во внимание введённое обозначение, под элементами, строками и столбцами определителя матрицы будем подразумевать элементы, строки и столбцы этой матрицы.)

Сформулируем понятие n! (читается эн факториал): если n – натуральное (целое положительное) число, то n! – это произведение всех натуральных чисел от 1 до n.

 n!=1×2×3×¼×(n–1) n. Интеграл произведения синусов и косинусов различных аргументов

Например,

 5!=1×2×3×4×5=120.

Замечание: в некоторых книгах вместо термина "определитель" используется термин "детерминант" и определитель матрицы A обозначается detA.

Определителем n-го порядка называется сумма n! слагаемых. Каждое слагаемое представляет собой произведение n элементов, взятых по одному из каждой строки и каждого столбца определителя [2] . (Произведения отличаются одно от другого набором элементов.) Перед каждым произведением ставится

знак "+" или "-". Покажем, как определить, какой нужно ставить знак перед произведением.

Так как в каждом произведении присутствует один элемент из 1-й строки, один элемент из 2-ой и т.д., то произведение в общем виде можно записать так:

 a1i×a2j×a3k×¼×ans.

Здесь  i, j, k, ¼, s – номера столбцов, в которых стоят элементы, выбранные из 1-й, 2-й, 3-й, ... n-й строк, соответственно. Ясно из сказанного выше, что каждое из чисел i, j, k, ¼, s равно какому-либо из чисел 1, 2, ..., n, и что все числа i, j, k, ¼, s – различные.

Расположенные в данном порядке

 i, j, k, ¼, s,

эти числа образуют "перестановку" из чисел 1, 2, ..., n (перестановкой называется заданный порядок в конечном множестве).

Взаимное расположение двух чисел в перестановке, когда большее стоит впереди меньшего называется инверсией. Например, в перестановке  три инверсии; в перестановке  – шесть инверсий.

Перестановка называется четной, если в ней четное число инверсий и нечетной, если число инверсий нечетное.

Теперь можно сформулировать правило: произведение a1i×a2j×a3k×¼×ans берется со знаком "+", если вторые индексы образуют четную перестановку, и со знаком "-", если нечетную.

Скалярной матрицей называется диагональная матрица с одинаковыми числами на главной диагонали; единичная матрица - частный случай скалярной матрицы.
Функция нескольких переменных