Искусство
Инженерная
Конспект
Лабы
ТОЭ
Математика
Курсовая
Физика

Черчение

Алгебра
Энергетика
Лекции
Сопромат
Контрольная
Информатика
Задачи

Математика решебник примеры решения задачи

При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Определители

Вычисление определителя четвертого порядка сводится в худшем случае (если среди элементов нет нулей) к вычислению четырех определителей третьего порядка.

Аналогичным образом вычисление определителя 5-го порядка сводится к вычислению 5-ти определителей 4-го порядка и т.д.

Для того, чтобы получить представление о том, что такое определитель n-го порядка, не прибегая к определению на предыдущей странице, можно поступить так: выучить, как вычисляются определители 2-го и 3-го порядков и как по методу Лапласа сводить вычисление определителя n-го порядка к вычислению определителя n–1-го порядка. Тогда становится понятным, как вычислять определитель 4-го порядка, затем 5-го порядка и т. д.

Из сказанного следует, что вычисление определителя 5-го порядка можно в общем случае свести к вычислению 20-ти(!) определителей 3-го порядка, что очень затрудняет задачу.

Вычисление определителя упрощается, если воспользоваться свойством 5. Пусть D – определитель четвертого порядка: Интегрирование по частям. Если функции u = j(x) и v = y(x) непрерывны на отрезке [a, b], а также непрерывны на этом отрезке их производные, то справедлива формула интегрирования по частям:

.

Этот определитель разложим по третьей строке, так как там есть нуль и, что особенно важно, –1. Задача заключается в таком преобразовании определителя D, чтобы получить нули на месте a31 и a33. К первому столбцу прибавим второй столбец, умноженный на –2, а к третьему столбцу прибавим второй столбец, умноженный на –3. Второй столбец, с помощью которого проводились преобразования, остается без изменений.

Таким образом вычисление определителя 4-го порядка сведено к вычислению только одного определителя 3-го порядка:

.

Пусть теперь D — определитель 5-го порядка:

.

Предположим, что мы решили разложить его по первому столбцу. Можно поступить следующим образом. Оставим первую строку без изменений. Вторую строку умножим на 3 и прибавим к ней первую, умноженную на –2. При этом обязательно за знак определителя выносится множитель  (см. свойство 3). Вместо третьей строки пишем сумму третьей и умноженной на  первой. Четвертую строку умножаем на 3 и прибавляем первую, умноженную на –4, опять вынося множитель  за знак определителя. Пятую строку умножаем на 3, прибавляем к ней первую, умноженную на –5 и опять выносим  за знак определителя. Теперь получим

.

Теперь вычисление определителя 5-го порядка сведено к вычислению только одного определителя 4-го порядка.

Скалярной матрицей называется диагональная матрица с одинаковыми числами на главной диагонали; единичная матрица - частный случай скалярной матрицы.

Электротехника

Курсовой расчет
Лабораторные
Математика
Искусство