Дифференциальное и интегральное исчисление Вычисление неопределенного интеграла

Математика решебник примеры решения задачи

При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Вычисление обратной матрицы

Пусть A=(aij) – квадратная матрица с определителем, не равным нулю. Тогда существует обратная матрица A–1, которая вычисляется по формуле

 .

Последняя формула означает, что в i-й строке и j-м столбце обратной матрицы располагается алгебраическое дополнение элемента, стоящего в j-й строке и в i-м столбце исходной матрицы, деленное на определитель исходной матрицы.

Напомним здесь, что Apq=(–1)p+qMpq, где Mpq называется минором и представляет собой определитель, получающийся из определителя detA вычеркиванием p-й строки и q-го столбца.

Рассмотрим пример: Найти неопределённый интеграл Курс лекций по математике

  detA=20+6–24=2;

  .

Еще раз подчеркнем, что обратная матрица существует только для квадратной матрицы с определителем, отличным от нуля!

Скалярной матрицей называется диагональная матрица с одинаковыми числами на главной диагонали; единичная матрица - частный случай скалярной матрицы.
Функция нескольких переменных