Дифференциальное и интегральное исчисление Вычисление неопределенного интеграла

Математика курсовая примеры решения задачи

Свойства определителей 1. Определитель не меняется при транспонировании. 2. Если одна из строк определителя состоит из нулей, то определитель равен нулю. 3. Если в определителе переставить две строки, определитель поменяет знак. 4. Определитель, содержащий две одинаковые строки, равен нулю.

Производная

Рассмотрим функцию y=f(x), непрерывную в некоторой окрестности точкиx. Пусть Dx приращение аргумента в точке x. Обозначим через Dy или Df приращение функции, равное f(x+Dx)–f(x). Отметим здесь, что функция непрерывна в точке x, если в этой точке бесконечно малому прира­щению аргу­мента Dx соответствует беско­нечно малое приращение функции Df. Пример. Функция есть первообразная для функции

Отношение Df/Dx, как видно из рисунка 1, равно тангенсу угла a, который составляет секущая MN кривой y=f(x) c положительным направлением горизонтальной оси координат.

Представим себе процесс, в котором величина Dx, неограниченно уменьшаясь, стремится к нулю. При этом точка N будет двигаться вдоль кривой y=f(x), приближаясь к точке M, а секущая MN будет вращаться около точки M так, что при очень малых величинах Dx её угол наклона a будет сколь угодно близок к углу j наклона касательной к кривой в точке x. Следует отметить, что все сказанное относится к случаю, когда график функции y=f(x) не имеет излома или разрыва в точке x, то есть в этой точке можно провести касательную к графику функции.

Отношение Dy/Dx или, что то же самое (f(x+Dx)f(x))/Dx, можно рассматривать при заданном x как функцию аргумента Dx. Эта функция не определена в точке Dx=0. Однако её предел в этой точке может существовать.

Если существует предел отношения (f(x+Dx)–f(x))/Dx в точке Dx=0, то он называется производной функции y=f(x) в точке x и обозначается y¢ илиf¢(x):

 .

Нахождение производной функции y=f(x) называется дифференцированием.

 Если для любого числа x из открытого промежутка (a,b) можно вычислить f¢(x), то функция f(x) называется дифференцируемой на промежутке (a,b).

Геометрический смысл производной заключается в том, что произ­водная функции f(x) в точке x равна тангенсу угла наклона касательной к графику функции в этой точке.

Производная  это скорость изменения функции в точке x. Из определения производной следует, что f¢(x)»Df/Dx, причем точность этого приближенного равенства тем выше, чем меньше Dx. Производная f¢(x) является приближенным коэффициентом пропорциональности между Df и Dx.

Производная функции f(x) не существует в тех точках, в которых функция не является непрерывной. В то же время функция может быть непрерывной в точке x0, но не иметь в этой точке производной. Такую точку назовём угловой точкой графика функции или точкой излома. Графические примеры приведены на рисунке 2.

 

Так функция y=êxê не имеет производной в точке x=0, хотя является непрерывной в этой точке.

Определитель, или детерминант — одна из важнейших характеристик квадратных матриц. Определитель матрицы размера n ? n равен ориентированному n-мерному объёму параллелепипеда, натянутого на её векторы-строки (или столбцы).
Функция нескольких переменных