Дифференциальное и интегральное исчисление Вычисление неопределенного интеграла

Математика решебник примеры решения задачи

Так как определение конечного предела ФНП совершенно аналогично определению конечного предела функции одной переменной, то для ФНП остаются справедливыми все свойства пределов, а также теоремы о конечных пределах, о бесконечно малых и бесконечно больших функциях, изученные ранее для функций одной переменной.

Определенный интеграл

Рассмотрим фигуру, ограниченную графиком непрерывной, неотрицательной на промежутке [a;b] функции f(x), отрезком [a;b] оси X, и прямыми x=a; x=b. Такую фигуру называют криволинейной трапецией. На рисунке 2 криволинейная трапеция выделена штриховкой. Площадь S этой трапеции определяется формулой

 .

Если f(x)<0 во всех точках промежутка [a;b] и непрерывна на этом промежутке (например, как изображено на рисунке 3), то площадь криволинейной трапеции, ограниченной отрезком [a;b] горизонтальной оси координат, прямыми x=a; x=b и графиком функции y=f(x), определяется формулой

. Математика примеры решения задач Производная интеграл

Перечислим свойства определенного интеграла:

1)   (здесь k ‑ произвольное число);

2) ;

3) ;

4) Если cÎ[a;b], то .

Из этих свойств следует, например, что .

Все приведенные выше свойства непосредственно следуют из определения определенного интеграла.

Оказывается, что формула из пункта 4 справедлива и тогда, когда cÏ[a;b]. Пусть, например, c>b, как изображено на рисунке4. В этом случае верны равенства

.

Производная - это предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует.
Функция нескольких переменных