Искусство
Инженерная
Конспект
Лабы
ТОЭ
Математика
Курсовая
Физика

Черчение

Алгебра
Энергетика
Лекции
Сопромат
Контрольная
Информатика
Задачи

Математика типовые задания примеры решения задачи

Функцию, имеющую конечную производную, называют дифференцируемой. Процесс вычисления производной называется дифференцированием.

Несобственные интегралы с бесконечными пределами

Если положить промежуток интегрирования бесконечным, то приведенное выше определение определенного интеграла теряет смысл, например, потому что невозможно осуществить условия n®¥;l®0 для бесконечного промежутка. Для такого интеграла требуется специальное определение.

Пусть функция y=f(x) определена и непрерывна на полубесконечном промежутке [a;¥), тогда несобственным интегралом с бесконечным пределом  называется , если предел существует. Если этот предел не существует, то не существует и несобственный интеграл. В этом случае принято говорить, что несобственный интеграл расходится. При существовании предела говорят, что несобственный интеграл сходится.

Аналогично

  и .

Примеры: 1. . Очевидно: , откуда следует

. Тройной интеграл. Задача о вычислении массы тела Математика лекции и задачи

2. ; этот предел не существует, следовательно, не существует или расходится интеграл I.

3. ; здесь предел также не существует, и интеграл расходится.

Упражнения

1.Найти производные от следующих функций:

1)

;

2)

;

3)

;

3)

;

5)

;

6)

;

7)

;

8)

;

9)

;

10)

;

11)

где x=1;

12)

;

13)

 где t=p/6;

14)

15)

;

16)

.

Вводится понятие производной высшего порядка, определяются правила вычисления производных суммы и произведения функций. Даётся определение дифференциала высшего порядка и выводится его связь с производными. Рассматриваются функции, заданные параметрически, изучается вопрос их дифференцирования. Вводится понятие вектор-функции скалярного аргумента, её предела и непрерывности.

Электротехника

Курсовой расчет
Лабораторные
Математика
Искусство