Искусство
Инженерная
Конспект
Лабы
ТОЭ
Математика
Курсовая
Физика

Черчение

Алгебра
Энергетика
Лекции
Сопромат
Контрольная
Информатика
Задачи

Математика типовые задания примеры решения задачи

Функцию, имеющую конечную производную, называют дифференцируемой. Процесс вычисления производной называется дифференцированием.

Частные производные

Частной производной по x функции z=f(x,y) в точке M0(x0,y0) называется предел

 ,

если этот предел существует. Обозначается эта частная производная любым из следующих символов:

 ;;.

Частная производная по x есть обычная производная от функции z=f(x,y), рассматриваемой как функция только от переменной x при фиксированном значении переменной y.

Совершенно аналогично можно определить частную производную по y функции z=f(x,y) в точке M0(x0,y0): Однородные системы линейных уравнений Математика лекции и задачи

 =.

В пространстве XYZ условие y=y0 описывает плоскость P, перпендикулярную оси OY и пересекающую эту ось в точке y0. Плоскость P пересекается с графиком функции z=f(x,y), вдоль некоторой линии L, как показано на рисунке 1. Тангенс угла между плоскостью XOY и касательной к линии L в точке с координатами x0,y0 равен частной производной по x функции z=f(x,y) в этой точке. В этом состоит геометрический смысл частной производной.

Аналогичное заключение можно сделать относительно частной производной по y.

Вводится понятие производной высшего порядка, определяются правила вычисления производных суммы и произведения функций. Даётся определение дифференциала высшего порядка и выводится его связь с производными. Рассматриваются функции, заданные параметрически, изучается вопрос их дифференцирования. Вводится понятие вектор-функции скалярного аргумента, её предела и непрерывности.

Электротехника

Курсовой расчет
Лабораторные
Математика
Искусство