Электротехнические материалы Теория конструктивных материалов

К тепловым характеристикам диэлектриков относятся: температура плавления, температура размягчения, температура каплепадения, температура вспышки паров, теплостойкость пластмасс, термоэластичность (теплостойкость) лаков, нагревостойкость, морозостойкость, тропикостойкость.

Пластмассы и пленочные материалы

Пластмассы находят применение в электротехнике как в качестве электроизоляционных, так и в качестве конструкционных материалов. По составу в большинстве случаев пластмассы представляют собой композиции из связующего и наполнителя. Кроме связующих и наполнителя применяют пластификаторы для улучшения технологических и эксплуатационных свойств пластмасс. В некоторые пластмассы вводятся стабилизаторы - химические соединения, способствующие длительному сохранению свойств пластмасс и повышению стойкости пластмасс к воздействию тепла, света, кислорода воздуха. По способности к формованию полимерные материалы подразделяются на две группы - термопласты (термопластичные) и реактопласты (термореактивные).

Широкое применение в электрических машинах, аппаратах, трансформаторах, приборах получили слоистые пластики, преимущственно электроизоляционного назначения. К слоистым пластикам относятся гетинакс и текстолит с разными наполнителями и древеснослоистые пластики.

Гетинакс получается путем горячего прессования бумаги, пропитанной термореактивной смолой. Гетинакс выпускается нескольких марок. Отметим гетинакс марки Х, который имеет повышенную штампуемость и гетинакс марки ЛГ, изготовляемый на основе лавсановой бумаги и эпоксидной смолы. Для изготовления печатных схем радиоэлектронной аппаратуры выпускается около 10 различных марок фольгированного с одной и с двух сторон гетинакса.

Текстолит аналогичен гетинаксу, но изготовляется из пропитанной ткани. Текстолит, изготовленный на основе ткани, пропитанной фенолформальдегидной смолой может работать в интервале температур от -60 до +105оС.

Применение стеклопластиков в качестве электроизоляционного и конструкционного материала в электромашиностроении позволяет создавать электрические машины разных классов нагревостойкости, повышать их надежность в эксплуатации и решать ряд новых технических задач.

Электроизоляционные органические полимерные пленки - тонкие и гибкие материалы нашли широкое применение в производстве конденсаторов, электрических машин, аппаратов и кабельных изделий. Электроизоляционным пленкам для отличия их от пленок другого назначения присваиваются специальные марки. Органические полимерные пленки могут быть разделены на две большие группы, разделяющиеся по электрофизическим свойствам: неполярные и полярные пленки. Для изоляции обмоток низковольтных электрических машин важную роль играют полимерные пленки с повышенной нагревостойкостью. Малая толщина пленок, наряду с высокими значениями электрической и механической прочности, обеспечивает не только увеличение надежности, но и существенное улучшение технико-экономических показателей. Марки наиболее важных электроизоляционных пленок приведены в таблице.

Неполярные пленкиПолярные пленки
Полиэтиленовая (ПЭ), марки М,Т,НПоливинилхлоридная (ПВХ)
Полипропиленовая (ПП), марки К,ОПолиимидная пленка
Политетрафторэтиленовая (ПТФЭ), марки КО,ЭО,ЭН,ИО,ПН Полиэтилентерефталатная (ПЭТ), марки Э,КЭ

 

Свoйствo металлов oбъясняeтся xoрoшeй прoвoдимoстью электрического тока, a этo знaчит металл oблaдaeт бoльшoй плoтнoстью свoбoдныx электронов. Мaлoe удельное сопротивление имeют xимичeски чистыe металлы. Кaк прaвилo, сплaвы пo срaвнeнию с чистыми металлами oблaдaют бoльшим удельным сопротивлением. Извeстнo, чтo с пoвышeниeм тeмпeрaтуры сопротивление металлов увeличивaeтся.