Электротехнические материалы Теория конструктивных материалов

Электроизоляционными материалами, или диэлектриками, называют такие материалы, с помощью которых осуществляют изоляцию, т. е. препятствуют утечке электрического тока между какими-либо токопроводящими частями, находящимися под разными электрическими потенциалами. Диэлектрики имеют очень большое электрическое сопротивление.

Свойства наиболее применяемых диэлектриков. 

Бумага и картон.

Важным преимуществом этих материалов является то, что они производятся из возобновляемого сырья, а именно из древесной массы. Технология приготовления состоит из варки щепы и опилок в щелочном растворе с добавками. Целлюлозные волокна разделяются, полученная пульпа загущается удалением некоторого количества воды, из нее удаляются металлические примеси. Затем следует прокатка между вальцами, при повышенных давлении и температуре. Чем выше плотность бумаги, тем выше как механическая, так и электрическая прочность бумаги. Самые тонкие и прочные бумаги используются для изготовления конденсаторов. Достаточно отметить, что плотность конденсаторных бумаг достигает 1.6 т/м3, т.е. более, чем в 1.5 раза превышает плотность воды. При этом электрическая прочность бумаги толщиной 10 мкм, пропитанной трансформаторным маслом, составляет до 10 МВ/см.

Электротехнический картон используется в качестве диэлектрических  дистанцирующих прокладок, шайб, распорок, в качестве изоляции магнитопроводов, пазовой изоляции вращающихся машин и т.п. Картон, как правило, используется после пропитки трансформаторным маслом. Электрическая прочность пропитанного картона достигает 40-50 кВ/мм. Поскольку она выше прочности трансформаторного масла, для увеличения электрической прочности трансформаторов зачастую устраивают в среде масла специальные барьеры из картона. Маслобарьерная изоляция обычно имеет прочность Е=300-400 кВ/см. Недостатком картона является гигроскопичность, в результате попадания влаги уменьшается механическая прочность и, резко уменьшается электрическая прочность (в 4 и более раз)

Материалы для изоляторов.

В последнее время бурно развивается производство изоляторов для ВЛ на основе кремнийорганической резины. Этот материал относится к каучукам, основное свойство которых -  эластичность. Это позволяет изготовлять из каучуков не только изоляторы, но и гибкие кабели. В энергетике используются разные типы каучуков: натуральные каучуки, бутадиеновые, бутадиен-стирольные, этиленпропиленовые и кремнийорганические.

Основу кремнийорганических резин составляют полиорганосилоксаны:

       R          R
        |           
НО-
Si-O-{-Si-O-}nH
        |            | 
        R         R

         Где R - одинаковые, либо разные органические радикалы. В зависимости от типа этих радикалов меняются свойства кремнийорганической резины. Иногда в основной цепи чередуются не только кремний и кислород, но и бор (боросилоксановые каучуки), углерод (силкарбоновые каучуки), азот (силоксазановые каучуки).  Получают кремнийорганическую резину из исходного каучука с помощью вулканизации, т.е. сшивки в пространственные комплексы исходных молекул. При этом химическая связь возникает либо по концевым H и OH группам, либо по радикалам. Реакция протекает за счет радиационного облучения, либо за счет химических агентов при повышенной температуре. Как правило, с завода-изготовителя поступает готовая к вулканизации масса. 

Свойства чистых кремнийорганических резин неудовлетворительны, в первую очередь ввиду низкой прочности и недостаточной свето-озоностойкости. В настоящее время изоляторы делают из композиционных материалов на основе кремнийорганических каучуков. В качестве усиливающих активных наполнителей используют нанопорошки двуокиси кремния (аэросил, белая сажа) и двуокиси титана. Из электрофизических и теплофизических свойств композиционного материала отметим:

диэлектрическая проницаемость                 e = 2.9-3.6;

удельное объемное сопротивление             1012-1013 Ом×м;

удельное поверхностное сопротивление     1012-1014  Ом;

тангенс угла диэлектрических потерь         5×10-4-2×10-3;

электрическая прочность                             18-24 кВ/мм,

теплоемкость                                                1.2-1.5 кДж/(кГ×К);

плотность                                                     1100-1600 кГ/м3;

прочность на разрыв                                   4-6 МПа.

Резюмируя свойства кремнийорганических резин, отметим, что они имеют удовлетворительные электрофизические свойства, высокую теплоемкость, сравнительно невысокую механическую прочность. Из других свойств выделим, то, что они стойки к действию озона, света и масла, морозостойки (- 50¸-90)°С и нагревостойки  (180¸250)°С, влагонепроницаемы, но газопроницаемы, масло-бензонестойки.

Электротехнический фарфор является искусственным минералом, образованным из глинистых минералов, полевого шпата и кварца в результате термообработки по керамической технологии. К числу наиболее ценных его свойств относится высокая стойкость к атмосферным воздействиям, положительным и отрицательным температурам, к воздействию химических реагентов, высокие механическая и электрическая прочность, дешевизна исходных компонентов. Это определило широкое применение фарфора для производства изоляторов. Основные характеристики:

диэлектрическая проницаемость                 7;

удельное объемное сопротивление             1011 Ом×м;

удельное поверхностное сопротивление     109-1012  Ом;

тангенс угла диэлектрических потерь         2×10-2;

электрическая прочность                             25-30 кВ/мм,

теплопроводность                                        1.0-1.2 Вт/(м×К);

теплоемкость                                                1.2-1.5 кДж/(кг×К);

плотность                                                     2300-2500 кг/м3;

прочность на разрыв                                   90 МПа.

Сравнивая данные по фарфору и кремнийорганическим резинам, можно выделить, что недостатками фарфора являются хрупкость, высокая плотность, низкая теплопроводность, высокие диэлектрические потери. Дугостойкость и короностойкость диэлектриков - стойкость электроизоляционных материалов к воздействию озона и азота, выделяющихся при тихом разряде - короне, а также стойкость к действию электрических искр и устойчивой дуги.