Электротехнические материалы Теория конструктивных материалов

Электротехнические материалы представляют собой совокупность проводниковых, электроизоляционных, магнитных и полупроводниковых материалов, предназначенных для работы в электрических и магнитных полях. Сюда же можно отнести основные электротехнические изделия: изоляторы, конденсаторы, провода и некоторые полупроводниковые элементы. Электротехнические материалы в современной электротехнике занимают одно из главных мест

       Конструкционные стали.

          Стали являются многокомпонентными системами на основе железа. В зависимости от добавок их свойства сильно меняются. Первой и основной добавкой к железу является  углерод.

         Температура плавления железа 1539 °С, плотность 7.68 Т/м3. Две основные модификации - a - железо и g - железо. Первая имеет объемно-центрированную решетку и существует в интервале температур до 910 °С и после 1392 °С. До температуры 768 °С эта модификация ферромагнитна. В промежуточном диапазоне существует g-железо, у которого решетка гранецентрированная. Эта структура парамагнитна.

Температура плавления углерода 3500 °С, плотность 2.5 Т/м3. Углерод растворим в железе в твердом и жидком состоянии, также может образовывать химическое соединение цементит, при больших концентрациях может существовать в виде графита.

Основные структуры системы Fe-C

  - твердый раствор углерода в a - железе с растворимостью всего 0.02 %, атом углерода помещается в центре грани решетки. Эта структура называется  феррит.

 - твердый раствор углерода в g - железе с растворимостью  2.14 %, атом  углерода помещается в центре куба. Эта структура называется аустенит. Отличается высокой пластичностью.

- Цементит-  соединение Fe3C. Здесь 6.67% углерода. До температуры 210 °С цементит ферромагнитен. Отличается высокой твердостью.

        Кроме того, в качестве особой фазы может существовать графит, и в качестве эвтектической структуры (смеси двух структур) - ледебурит. Он представляет собой структуру, состоящую из пластин цементита, проросших древовидными (дендритами) структурами кристаллов аустенита.

      Сплавы с содержанием углерода до 2.14 % называются сталью, а выше 2.14 % - чугуном. Сталь не содержит ледебурита, поэтому она пластична, ковка и т.п. Чугун в силу своего строения не поддается ковке, зато обладает лучшими литейными качествами, меньшей усадкой, более низкой температурой плавления.(около 1000 °С). Аустенит при охлаждении ниже примерно 700 °С может превратиться в перлит - пластинчатые, чередующиеся структуры феррита и цементита.

       При очень медленном охлаждении расплава цементит не образуется, а вместо него образуются графит + аустенит при температуре 700-1200 °С и графит + феррит при температуре ниже 700 °С. Выдерживание сплава при повышенных температурах также приводит к распаду цементита на графит и второй твердый раствор (феррит или аустенит).

Влияние различных добавок на сталь.

1. Содержание углерода. Чем больше углерода, тем более хрупкая, менее вязкая, менее пластичная, поначалу более прочная, затем менее прочная. Растет удельное сопротивление, коэрцитивная сила, падает плотность, теплопроводность, магнитная проницаемость.

2. Содержание кремния и марганца. Их добавляют при выплавке для удаления окислов железа. Оставаясь в стали кремний повышает предел текучести, что затрудняет например штамповку. Марганец повышает прочность.

3. Содержание серы. Сера является естественной вредной примесью в металле. Она образует FeS, которые нарушают контактирование зерен между собой. При этом ухудшаются коррозионная стойкость, трещиностойкость, свариваемость.

4. Фосфор также является вредной примесью. Он частично растворяется в стали, частично собирается на границах зерен. Поэтому уменьшаются пластичность, вязкость, трещиностойкость.

5. Содержание азота, кислорода и водорода.  Образование оксидов и нитридов происходит, в основном на границах зерен. Поэтому они способствуют хрупкому разрушению. Особенно опасен водород, что приводит к водородной хрупкости стали.

Легирующие добавки. Обычно это никель, марганец. Как правило они повышают предел текучести стали, причем они способствуют стабильности аустенита в низкотемпературной области. Из него делают нержавеющие стали. Отметим, что нержавеющая сталь действительно парамагнитна, как и должно быть у аустенита.

         Если в феррите увеличить содержание углерода, например путем быстрого охлаждения аустенита, то получится мартенсит - пересыщенный твердый раствор внедрения углерода в феррите. Он отличается высокой твердостью и прочностью. 

         Рассмотрим наиболее популярные марки стали.

         Стали обыкновенного качества: Ст.0, Ст.1, Ст.2, Ст.3, Ст.4, Ст.5, Ст.6. 

С ростом номера растет содержание углерода от 0.06% до 0.4-0.5%, во всех сталях содержится марганец (0.2-0.7%), кроме Ст.0. В названии присутствуют знаки «сп», «пс», «кп», означающие «спокойная», «полуспокойная» и «кипящая». Фактически различаются разным количеством FeO, который взаимодействует с углеродом, образуя СО, который, в свою очередь, выделяется в виде пузырьков газа. Уменьшают содержание FeO, добавляя  раскислители, взаимодействующие с FeO и уменьшающие, тем самым, его количество. Эти вещества - ферромарганец, ферросилиций и алюминий. Прочность обычных сталей порядка sв»400 Мпа, s0.2»200 Мпа, удлинение до разрыва 20%.

        В качественных сталях Ст.08, Ст.10, Ст.15, Ст.20 ,......, Ст.85 цифры означают содержание углерода в сотых долях процента. В них более строгие ограничения на содержание фосфора, серы и других неметаллических включений. Содержание углерода принципиально меняет свойства сталей. Низкоуглеродистые обладают низкой прочностью, низкой упругостью, зато высокой пластичностью и большим удлинением до разрыва, хорошей свариваемостью. Применяют для штамповки, сварки ответственных узлов и т.п. Высокоуглеродистые стали обладают повышенной прочностью sв>700 Мпа, износоустойчивостью, упругостью. Применяют для изготовления рессор, пружин и т.п.

          Легированные стали отличаются добавкой легирующих элементов: А-азот, Г-марганец, Н-никель, С-кремний, Т-титан, Х-хром, Ю-алюминий. Цифры в начале названия означают содержание углерода в сотых долях процента, цифры после букв означают содержание легирующего элемента в процентах. Например в популярной марке нержавеющей стали 12Х18Н10Т содержится 0.12% углерода, 18% хрома, 10% никеля и 1 % титана. В зависимости от добавок можно резко усилить те или иные свойства стали.

          Специальные стали с магнитными свойствами основаны на установлении структуры феррита, либо мартенсита. Чистые ферритные низкоуглеродистые, легированные кремнием стали являются прекрасными магнитно-мягкими материалами для трансформаторов. Мартенситные сплавы с большим содержанием углерода (1%), легированные кобальтом и хромом образуют семейство магнитотвердых материалов для магнитов. Рaзличaют прoвoдникoвыe материалы пo мexaничeским свoйствaм: прoчнoсть при рaстяжeнии, изгибaнии, твeрдoсть, и т.п. При кoнструирoвaнии и прoeктирoвaнии элeктрoустaнoвoк учитывaют эти свoйствa. Xимичeскиe свoйствa учитывaют при выбoрe и примeнeнии прoвoдникoвыx материалов. Нaпримeр, eсли прoвoдники трeбуeтся испoльзoвaть в услoвияx пoвышeннoй влaжнoсти, тo иx пoмeщaют в гeрмeтичeскиe oбoлoчки или дaжe в нeкoтoрыx случaяx зaщищaют aнтикoррoзиoнными пoкрытиями.