Электротехнические материалы Теория конструктивных материалов

Не менее важное значение для электротехники имеют магнитные материалы. Потери энергии и габариты электрических машин и трансформаторов определяются свойствами магнитных материалов. Довольно значительное место занимают в электротехнике полупроводниковые материалы, или полупроводники. В результате разработки и изучения данной группы материалов были созданы различные новые приборы, позволяющие успешно решать некоторые проблемы электротехники.

Особенности электропроводности для различных агрегатных состояний.

Как уже указывалось в лекции 2, способность любых материалов проводить электрический ток определяется наличием зарядов в нем и возможностью их движения. Можно еще раз написать наиболее общую формулу, для плотности тока j верную для любых сред, за исключением вакуума.

 j =S ni qibi E,                                                                     (8.5)

Здесь i - тип или cорт заряда, (например электроны, ионы различных молекул, молионы, заряженные частицы и т.п.), ni - концентрация зарядов i-cорта, qi - значение заряда, bi - подвижность носителей заряда.

     В соответствии с выведенными ранее выражениями рассмотрим особенности электропроводности при различных агрегатных состояниях.

Твердые диэлектрики.  Здесь носителями заряда могут быть электроны и дырки. Ионы “вморожены” и практически не имеют возможности движения bi ~10-23 м2×с. Подвижность электронов и дырок достаточно высока и может достигать be~10-3 м2/(Вc). Количество электронов и дырок определяется шириной запрещенной зоны W~5-10 эВ, тепловой энергией kT~1/40 эВ, плотностью молекул n~1027 шт/м3 и составляет пренебрежимо малую величину.  

Рекомбинация носителей заряда в твердых телах не затруднена. Ясно, что по этому механизму проводимость твердых диэлектриков практически отсутствует,т.к. заметное изменение концентрации возможно лишь за времена, сопоставимые с геологическими периодами. Поскольку основную роль в выражениях (2.5),(2.7) играет экспоненциальный множитель, то лишь наличие примесей с энергетическими уровнями внутри запрещенной зоны, вблизи от края зоны с DW~1 эВ, дает возможность проводимости твердых тел. Фазовая модуляция При фазовой модуляции в соответствии с модулирующим сигналом изменяется фаза высокочастотного колебания

Газы. Рекомбинация носителей не затруднена, т.к. заряды разного знака могут беспрепятственно сближаться на близкое расстояние. В оценке считаем n~1025 шт/м3, энергию ионизации W~10-20 эВ, подвижность электронов be~10-3 м2/(В×c), ионов bi~10-4 м2/(В×c), заряд e=1.6 10-19 Кл. Определяющим фактором является экспоненциальный множитель, что дает пренебрежимо малую проводимость. 

          На самом деле фактором, определяющим проводимость газов является космическое излучение.  Проводимость воздуха за счет естественной ионизации составит s ~10-14 Cм/м.

Жидкости. Современные представления о проводимости диэлектрических жидкостей состоят в следующем. Здесь носителями заряда являются ионы, т.к. электроны легко прилипают к нейтральным молекулам жидкости и не могут существовать в свободном состоянии. Кроме того, в жидкости заряды могут переноситься молионами, макрочастицами и даже пузырьками. Ионизация облегчена по сравнению с газами за счет большей диэлектрической проницаемости.Рекомбинация носителей заряда в жидкости затруднена, поскольку заряды легко окружаются соседними молекулами, ориентированными соответствующими концами постоянных или индуцированных диполей к ионам.

Что касается подвижности, то она определяется движением жидкости. При этом подвижности любых ионов близки друг другу, т.к. ионы “вморожены” в жидкость и переносятся “микроструйками” жидкости.

 Подвижность, связанная с движением жидкости, называется электрогидродинамической и составляет mэгд ~ (10-7 -10-8) м2/Вc., т.е. на три-четыре порядка меньше подвижности ионов в газах.

Таким образом,  в жидкостях обычно проводимость больше, чем в газах и твердых телах за счет облегченной ионизации и затрудненной рекомбинации.

С другой стороны, отсутствие формы жидкости, легкость очистки дают возможность радикального уменьшения электропроводности, что невозможно сделать с твердыми диэлектриками. Влагостойкость, химстойкость, морозостойкость и тропикостойкость диэлектриков - стабильность электрических и физико-химических характеристик электроизоляционных материалов при воздействии соответственно влаги, кислот или щелочей низкой температуры в пределах от -45° до -60° С, а также тропического климата, характеризуемого высокой и резко изменяющейся в течение суток температурой воздуха, его высокой влажностью и загрязненностью, наличием плесневых грибков, насекомых и грызунов.