Электротехнические материалы Теория конструктивных материалов

Проводниковые материалы К этой группе материалов относятся металлы и их сплавы. Чистые металлы имеют малое удельное сопротивление. Исключением является ртуть, у которой удельное сопротивление довольно высокое. Сплавы также обладают высоким удельным сопротивлением. Чистые металлы применяются при изготовлении обмоточных и монтажных проводов, кабелей и пр.

      Пробой жидкостей  

        Механизм электрического пробоя жидкостей вначале считался аналогичным механизму пробоя газов, считая жидкость плотным газом. Это основывалось на схожести картины разряда и на некоторой схожести разрядных зависимостей. Однако прямое, непосредственное применение газовых аналогий неправильно. Дело в том, что поведение электронов в жидкости кардинально отличается от поведения электронов в газе. Молекулы жидкости расположены столь близко друг другу, столь сильно взаимодействуют друг с другом, что электрон не может свободно двигаться и ускоряться в электрическом поле. В жидкости, кроме особо чистых сжиженных благородных газов, свободные электроны не могут существовать. При попадании свободных электронов в жидкость они сначала сольватируются, затем прилипают к нейтральным молекулам, образуя тем самым, отрицательные ионы. Поэтому понятие длины свободного пробега для жидкости невозможно ввести. Грубая оценка принципиальных ограничений электрической прочности может быть сделана из следующих соображений. Считаем, что электрон может ускоряться на протяжении межмолекулярного расстояния. Используя в качестве длины пробега lэлект межмолекулярное расстояние lможно получить оценку предельной электрической прочности жидкости:

 eEпредl = W

           Подставляя значения l ~ 5×10-10м, W~ 5 эВ, получим, что Eпред~1010 В/м. Эксперименты дают значения на 3-4 порядка меньше.

 

 Рассмотрим характер некоторых эмпирических зависимостей электрической прочности жидких диэлектриков от различных факторов.

Зависимость от давленияЭлектрическая прочность жидкостей зависит от давления достаточно слабо Е ~p1/6-1/12 . Иногда эту зависимость представляют в виде кривой с насыщением.

 Температурная зависимость.Эта зависимость зачастую имеет достаточно сложный вид. Например для технически чистого трансформаторного масла электрическая прочность с ростом температуры от отрицательных температур до 30-40 °С уменьшается, затем возрастает в диапазоне до 50-70 °С и потом снова убывает. Для чистых жидкостей, как правило, наблюдаются три области зависимостей: при низких температурах электрическая прочность падает по мере роста температуры, затем очень слабо меняется и вблизи температуры кипения опять заметное падение. Объяснение этому будет дано ниже. Конструирование металлургических машин

Зависимость от межэлектродного зазора.При малых зазорах пробивная напряженность поля резко нарастает с уменьшением зазора. Согласно экспериментальным данным в микронных зазорах пробивная напряженность доходит до 10 МВ/см. 

Зависимость от площадиЭта зависимость - чисто эмпирическая, имеет вид Е = Е0S-1/10 . Несомненно, что как и в случае пробоя газа она обусловлена вероятностными характеристиками инициирования пробоя.

Зависимость от влажности.Эта зависимость проявляется при малой влажности, менее 0.01% и выражается в резком уменьшении пробивного напряжения с ростом содержания воды.

Закономерности импульсного пробояжидкости

         При импульсном пробое жидкостей также увеличивается пробивное напряжение по мере укорочения длительности импульса. Электрическая прочность в наносекундном диапазоне может превышать 10-20 МВ/см.

         Для практических целей предложено и широко используется обобщение эмпирических зависимостей в виде т.н. формулы Мартина.

                                                                                    (9.3)

где постоянная M зависит от сорта жидкости и имеет размерность МВ/см. В этом выражении длительность импульса t следует подставлять в микросекундах, давление в атм., а площадь электродов S - в см2. Постоянная А составляет 0.7 МВ/см для гексана и трансформаторного масла, 0.6 МВ/см для глицерина, 0.5 МВ/см для этилового спирта, 0.6 МВ/см для воды в случае пробоя с катода, 0.3 МВ/см в случае пробоя с анода.

Для пробоя жидкостей существуют специфические зависимостиэлектрической прочности от наличия примесей. В принципе увеличение количества таких примесей, как механические твердые частицы, пузырьки, примеси, увеличивающие электропроводность приводит к уменьшению электрической прочности. Зачастую электрическая прочность является не физическойхарактеристикой жидкости, атехнологическойхарактеристикой жидкости и способа ее приготовления.

          К настоящему времени не существует теории, позволяющей получать оценки  электрической  прочности из "первых принципов", т.е. из физической картины предпробивных явлений. Наиболее очевидной представляется гипотеза об ударной ионизации электронами молекул жидкости. На основе этой гипотезы разработан ряд моделей пробоя, позволяющих оценить электрическую прочность простых углеводородных жидкостей и даже предсказать характер изменения электрической прочности с разветвлением структуры молекул. Например, в одной из моделей считается , что электроны при движении в жидкости взаимодействуют с колебаниями связи С-С или С-Н. Энергия колебаний Wv= hn~10-2-10-1 эВ много меньше чем энергия ионизации 10 эВ. Если электрон набирает энергию больше Wv , то по мнению авторов, он может двигаться без потерь до достижения энергии ионизации. Подбор параметров дает возможность получить значения электрической  прочности Eпр, близкие к экспериментальным данным. Однако при  слабых изменениях  внешних  условий: температуры Т, давления Р, длительности импульса t теоретические оценки существенно расходятся с экспериментом. Согласно моделям Eпр является характеристикой жидкости и не зависит от Т и Р, тогда как в эксперименте Eпр может изменяться в несколько  раз при изменении температуры и давления. Столь явное расхождение требует учета других процессов, зависящих от внешних условий.

          Появление моделей, связанных с зарождением в жидкости парогазовой фазы, позволило объяснить на качественном уровне ряд зависимостей. Критерии пробоя основаны на создании условий для появления пузырьков за счет кипения жидкости при протекании тока, либо за счет кавитации под действием электростатических или кулоновских сил. Принципиальными недостатками моделей являются несоответствие эксперименту расчетных зависимостей Eпр(t,P). Расчетная электрическая прочность оказывается одинаковой для импульсов любой длительности, что противоречит практике. Согласно экспериментальным данным Eпр(t) в микро- и субмикро-секундном диапазоне меняется как t -(1/3-1/5).  Что касается давления, то в моделях зависимость Е(P)~P1/2, что значительно расходится с экспериментом           Е(P) ~P (1/6-1/8).

Модель развития предпробивных процессов можно представить следующим образом. Под действием электрического поля на пузырьки, заранее существующие в жидкости, в них возникают  ионизационные процессы (частичные разряды) после достижении на их размере падения напряжения Up. После разряда поле в пузырьке уменьшается вследствие экранирования осевшими зарядами внешнего поля, что вызывает ослабление, либо прекращение ионизационных процессов. Действие электрического поля на осевший заряд приводит к движению стенки пузырька и его вытягиванию вдоль поля, а также к продвижению заряда вглубь жидкости со скоростью, определяемой подвижностью носителей заряда. При этом возможны две ситуации: поддержание разряда в виде “тлеющего разряда”, либо прекращение разряда. В первом случае на пузырьке поддерживается некоторое напряжение, по-видимому, соответствующее закону Пашена. В последнем случае напряжение на пузырьке растет, что ведет к повторному частичному разряду и движению в жидкости новой волны зарядов. Определяющий параметр - давление на стенку пузырька, обусловлен действием кулоновских сил на инжектированный заряд и ростом давления в пузырьке за счет нагрева газа в нем. Зажигание разряда в жидкости произойдет тогда, когда напряженность поля в жидкости, вблизи полюса пузырька, достигнет критического значения. Пробой произойдет после пересечения промежутка каналом разряда. Эта модель позволяет, полуколичественно, объяснить практически все экспериментальные зависимости: от давления, от температуры, от вязкости, от длительности воздействующего импульса (рис.9.5) и т.д.

Рис.9.5 Расчетная (пузырьковая модель) и эмпирическая зависимости предпробивного времени от напряженности поля

Термопластичными электроизоляционными материалами являются такие, которые, будучи твердыми в исходном, холодном состоянии, размягчаются при нагреве и растворяются в соответствующих растворителях. После охлаждения эти материалы вновь отвердевают. При повторном нагреве сохраняется их способность к размягчению и растворению в растворителях.