Информатика и информационные технологии Электротехника История искусства Каталог графических примеров

Построение многоугольника равного заданному

Часто контурными очертания различных деталей являются различные многоугольники. Например, требуется вырезать из листа семиугольник неправильной формы. Разметка листа может быть выполнена с помощью циркуля.

Построение многоугольника основано на последовательном построении ряда треугольников, примыкающих сторонами друг к другу. Такой метод построения  называется методом триангуляции. Разобьем предложенный семиугольник на несколько треугольников: 123, 134, 345, 356, 167.

Последовательность построения семиугольника в данном случае следующая:

  • выбираем произвольную точку 1 и откладываем от нее отрезок 12=R1;

  • из точек 1 и 2 проводим дуги окружностей радиусами соответственно R2=13 и R3=23, которые пересекаясь определяют положение точки 3(треугольник 123);

  • из точек 1 и 3 проводим дуги окружностей радиусами соответственно R4=14 и R5=34 которые пересекаясь определяют положение точки 4 (треугольник 134);

  • из точек 3 и 4 проводим дуги окружностей радиусами соответственно R7=35 и R6=45 которые пересекаясь определяют положение точки 5 (треугольник 345);

  • из точек 3 и 5 проводим дуги окружностей радиусами соответственно R9=36 и R8=56 которые пересекаясь определяют положение точки 6 (треугольник 356);

  • из точек 1 и 6 проводим дуги окружностей радиусами соответственно R11=17 и R10=67 которые пересекаясь определяют положение точки 7 (треугольник 167);

  • соединив полученные вершины построим искомый семиугольник.

Начертательная геометрия и инженерная графика, перспектива